Deep Supervised Hashing with Triplet Labels

نویسندگان

  • Xiaofang Wang
  • Yi Shi
  • Kris M. Kitani
چکیده

Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hashing codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result in sub-optimal hash codes. Recently, deep hashing methods have been proposed to simultaneously learn image features and hash codes using deep neural networks and have shown superior performance over traditional hashing methods. Most deep hashing methods are given supervised information in the form of pairwise labels or triplet labels. The current state-of-the-art deep hashing method DPSH [1], which is based on pairwise labels, performs image feature learning and hash code learning simultaneously by maximizing the likelihood of pairwise similarities. Inspired by DPSH [1], we propose a triplet label based deep hashing method which aims to maximize the likelihood of the given triplet labels. Experimental results show that our method outperforms all the baselines on CIFAR-10 and NUSWIDE datasets, including the state-of-the-art method DPSH [1] and all the previous triplet label based deep hashing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Learning Based Deep Supervised Hashing with Pairwise Labels

Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hashcode learning with deep neural networks, which have shown better pe...

متن کامل

Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss

Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissim...

متن کامل

Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval

Hashing techniques have been intensively investigated for large scale vision applications. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, most existing supervised hashing methods only construct similarity-preserving hash codes. Observing that semantic structures carry complementary information, we propose the idea of cotraining for ha...

متن کامل

Deep Triplet Supervised Hashing

Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hash codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result in s...

متن کامل

Deep Discrete Hashing with Self-supervised Pairwise Labels

Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016